Decoding Nucleic Acid Signals of Environmental Chemical Exposures

Linlin Zhao

Department of Chemistry & Environmental Toxicology Graduate Program University of California, Riverside

Mitochondria – More Than the Powerhouse

Source - Mitochondria The Powerhouse Of The Cell Science Notebook: Funny Biology Notebook

Mitochondria – More Than the Powerhouse

Zeng et al. Front. Cardiovasc. Med. 2022

Mitochondrial Diseases

Mitochondrial diseases affect parts of your body that need the most energy – heart, brain, muscles – are most affected by mitochondrial disease. An affected individual may exhibit a spectrum of symptoms.

Brain

developmental delays, dementia, migraines, autistic features, seizure, stroke, atypical cerebral palsy, learning disabilities

Nerves

fainting, zero reflexes, heat/cold intolerance, pain

Kidneys

renal tube failure

Liver

low blood sugar, liver failure

Eyes

vision loss, ptosis, optic atrophy, strabismus, ophthalmoplegia, retinitis pigmentosa

Muscles

weakness/failure, cramping, reflux, vomiting, constipation, diarrhea, hypotonia, dysmotility

Pancreas

diabetes, pancreatic failure, parathyroid failure

Heart

defects, blockage, cardiomyopathy

Ears

hearing loss

Systemic

failure to gain weight, fatigue, short stature, unexplained vomiting, respiratory problems

United Mitochondrial Disease Foundation

Prevalence of Mitochondrial Toxicity

- 35% of pharmaceutically relevant molecules tested were mitotoxic; also supported by HTS studies
- Many chemical pollutants affect mitochondria, although in many cases mitochondria are not the only subcellular target
- Effects may persist long after exposure ceases
- Impact on the nuclear genes important for mito functions

Dykens & Will, 2007. Drug Discov. Today; Meyer & Chan, 2017. Toxicology

Known Mitochondrial Disruptors

- Rotenone (piscicide or fish poison) complex I inhibitor, ROS
- MPTP bioactivation to MPP⁺, which accumulates in mitochondria and inhibits ETC, ROS
- Heavy metals (Cu, Cd, Pb, Mn, Hg, As, and Al) ROS
- Cyanide complex IV inhibitor
- Azidothymidine (an anti-HIV drug) accumulates within the mitochondrial intermembrane space where it disrupts the ATP/ADP translocator and enhances the production of ROS
- Emerging: polycyclic aromatic hydrocarbons, particulate air pollutants, heavy metals, endocrine-disrupting chemicals, pesticides, nanomaterials

Mitochondrial DNA (mtDNA)

	nuclear DNA	mtDNA
size	3.3 x 10 ⁹ bp	16,569 bp
number of genes	20,000 - 30,000	37 (13 polypeptides, 22 tRNAs, 2 rRNAs)
chromosomes	22 autosomes, 2 sex	1 (polyploidy, 2-10 per organelle)
coding DNA	~ 3%	93% (no introns, a non-coding region)
inheritance	autosomal	maternal
transcription	individual gene	polycistronic
DNA replication	cell cycle dependent	independent of cell cycle
half-life	30-40 days	a few days

Chemicals Targeting mtDNA

Source of environmental	Compound	Mitochondrial changes		References
contamination		Organelle level	mtDNA level	
Pesticides	rotenone		block DNA polymerase ↓ replication	Sanders et al. (2014)
	organophosphorous compounds, tri-ortho tolyl phosphate, triphenyl phosphite, parathion	[†] ROS changes in ΔΨm		Carlson and Erich (1999)
PCBs	PCB quinone metabolite PCB29-pQ	↑ ROS $\downarrow \Delta \Psi m$ induction of apoptosis		Xu et al. (2015)
Dioxins	dibenzofuran	1 phosphorylative efficiency		Duarte et al. (2013)
Diomis	TCDD	↓ ΔΨm	↓mtDNA copy number	Biswas et al. (2008)
		↑ ROS	1 8-OHdG levels mtDNA	Wan et al. (2014) and
			deletion	Chen et al. (2010)
Metals/metalloids	Cd	↑ ROS apoptosis		Bertin and Averbeck
				(2006)
	Cd, Hg, Cu	↑ ROS ↓ΔΨm		Belyaeva et al. (2012)
	As ₂ O ₃		↓mtDNA copy number mtDNA deletion	Zhang et al. (2011)
	Methyl Hg	apoptosis	Point mutations in the D- loop	Wang et al. (2016)
Air pollutants	Diesel exhaust Ultrafine particles	↓∆Ψm Apoptosis ↓mitochondrial mass		Xia et al. (2004)
-	B[a]P	↑ ROS		Kowaltowski et al. (2009)
		Changes in the mt-proteome	↑mtDNA copy number	Kim et al. (2014)
			DNA lesions but no point mutations/deletions	Valente et al. (2016)
	NO _x	↓ATP production ↑ ROS		Yan et al. (2015)
	SO ₂	↑ATP production $↑$ ΔΨm	↑mtDNA copy number	Qin et al. (2012)
	$SO_2 + B[a]P$	↓ΔΨm Apoptotic/anti-apoptotic		Qin et al. (2015)
		signals at different post-exposure times		
Algal toxins	Microcystin-LR	↑ ROS apoptosis	Changes in mtDNA copy number	Chen et al. (2013)
			Alter mtDNA expression	Li et al. (2016a, b)

Zolkipli-Cunningham & Falk 2017. Toxicology

Chemistry of DNA Modifications

A broad spectrum of DNA lesions derived from environmental chemicals

Liu & Wang, Chem Soc Rev 2015 Guo & Turesky, High-Throughput 2019

9

> 50 kinds of endogenous DNA base modifications

Effects of Genotoxic Stress on mtDNA

- mtDNA lesions form at comparable or higher levels than nDNA
- Resistant to an increased mutation load with known mutagens or repair deficient conditions (OGG1 or MUTYH KO mice; benzo[a]pyrene or N-ethyl-N-nitrosourea (ENU) exposed mice; aflatoxin B1 exposed *C. elegans*)
- Change in mtDNA copy number varies with different chemical exposures
- Release of mtDNA into the cytoplasm to trigger immunological and inflammation pathways
- An emerging role of mtDNA as a genotoxic stress sensor

Main Mechanisms of Mito DAMP Signaling

Damage-associated molecular pattern (DAMP) molecules: nucleic acids, small metabolites, peptides

mtDNA Damage, Repair and Turnover

mtDNA cellular stress codes?

Zhao & Sumberaz, Chem Res Toxicol, 2020 Zhao, The Enzymes, 2019

Chemical Biology and Enzymology of mtDNA

Abasic (AP) Sites: Abundance and Biological Importance

Lindahl, Biochem 1972; Swenberg, Toxicol. Sci. 2011; Kohli & Zhang, Nature 2013; Krokan, Cold Spring Harb. Perspect. Biol. 2013

Mitochondrial Transcription Factor A (TFAM)

TFAM Promotes AP-DNA Cleavage

Experimental Design

TFAM:DNA binding stoichiometry

Riley Boyd

Dr. Wenyan Xu

D: DNA; T: TFAM

Xu et al. PNAS, 2019

Quantification of DPCs and SSB

TFAM Reduces the Stability of AP-DNA

	TFAM-DNA complex		ex	free DNA
AP position	NaBH3CN	<i>K</i> dis (10 ⁻⁵ s ⁻¹)	<i>t</i> 1/2 (h)	<i>t</i> 1/2 (h)
AP 12	_	9.1 ± 0.7	2.1 ± 0.2	480 ± 50
AP 12	+	12 ± 1	1.6 ± 0.2	– ~230-joid reduction
AP 15	_	9.1 ± 2.1	2.3 ± 0.4	2800 ± 100
AP 15	+	46 ± 8	0.4 ± 0.1	— ~ 1200-fold reduction
AP ₁	_	3.4 ± 0.4	5.7 ± 0.7	980 ± 120
AP ₁	+	7.2 ± 0.2	2.7 ± 0.1	~1/0-fold reduction
AP ₁₅	+	0.068 ± 0.010	607	

AP Stability as a Function of Position

 $(N_{\alpha}$ -acetyl-lysine)

19

Lys Residues Facilitate AP-DNA Cleavage

Tang et al. Anal Chem, 2021

Cys Residues Form Stable TFAM-DPCs

TFAM-DPCs Form in Cells and Regulated by GSH

Quantification of AP sites

TFAM-DNA cross-links

Role of Cys Residues

wt/NN wt/BD 2CS/NN 2CS/BD

Xu et al. *Nucleic Acids Res*, 2023 Xu et al. *DNA*, 2022

AP Positions Correlate with "low TFAM" Sites

1 - mtDNA map 2 - Dox & APE1 inhibitor 3 - untreated control 4 - mtDGF 5 - high TFAM sites 6 - low TFAM sites

Dr. Chaoxing Liu Now – PI, Sun Yat-Sen Univ.

- Correlations with low TFAM sites corroborate the role of TFAM in promoting AP-DNA cleavage.
- Correlations with G4

	Control	Induced	
No. of AP locations	65	125	
correlation with "low TFAM" sites	22 (34%), <i>p</i> = 0.038	42 (34%), <i>p</i> = 0.001	
correlation with "high TFAM" sites	8 (12%) , <i>p</i> = 0.71	6 (4.8%) , <i>p</i> = 0.0003	

Abundant GSH-DNA Adducts in Mitochondria

GSH-DNA adducts form at much higher levels in mtDNA relative to nDNA

Yu Hsuan Chen

Martin Esparza Sanchez

Chen et al. in preparation

24

Potential Roles of TFAM-DPCs and GSH-DNA Adducts

- Are TFAM-DPCs and GSH-DNA adducts general products from environmental chemical exposures?
- Are they triggers of mtDNA turnover?
- Are they released into the cytoplasm? If so, are they proinflammatory?

TFAM Regulates mtDNA Repair

- TFAM stimulates UNG1 and APE1 enzymatic turnover under optimal TFAM/DNA molar ratios
- 8-oxo-7,8-dihydro-2'-deoxyguanosine enhances TFAM-DNA binding when present in specific sequence motifs.
- Analysis of published 8-oxodG and TFAM mapping data reveals a correlation between 8-oxodG and TFAM locations in mtDNA

Fate of Released mtDNA

- Cytoplasm innate immune and inflammation responses
- Circulating cell-free (ccf)-mtDNA a systemic alarmin
- Exists in different forms cell-free mitochondria, extracellular vesicles or free mtDNA
- Functional importance of ccf-mtDNA is controversial
- Challenges small amounts, heterogeneity, lack of purification methods
- Recommendations: Trumpff et al. Mitochondrion 59 (2021) 225–245

Time (min)

Manipulation of mtDNA Turnover

Manipulation of mtDNA Turnover

• 0µM

▲ 5μΜ

25µM

* = Statistically Significant to No Dox Control

Summary

- mtDNA has emerged as a genotoxic stress sensor
- Damaged mtDNA may contain cell stress codes
- Our studies have shown TFAM plays multiple roles in facilitating damaged mtDNA (AP-containing) and regulating the mtDNA repair
- Mechanistic insights enable us to investigate the forms and functions of mtDNA under chemical exposures and validate certain forms of mtDNA as biomarkers

Acknowledgement

NIH R35 GM128854 R21 HG012412

Follow us on X @zhaolabucr Current Dr. Anal Jana Dr. Shane Kennedy Lael Cardinal Yu Hsuan Chen Briana Hojo Jacob Perkins Anthony Rios Martin Esparza Sanchez Seanmory Sothy Matthew Tippin Kathleen Urrutia Guodong Zhang

<u>Former</u> Dr. Wenyan Xu Dr. Chaoxing Liu Ching-Hsin Yang Jin Tang Wenxin Zhao

<u>Collaborators</u> Dr. Yinsheng Wang Dr. Chia-en Chang